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Self-similarsolutions of the axisymmetric problem of rotation of a
linear viscoplastic medium were found in [1,2]. This paper presents
the solution of the self-similar problem of the flow with heat trans-
fer of a heat-conducting viscoplastic medium for which the shear
stress is a function of the shear strain rate and temperature.

An infinitely long cylinder of small radius ro rotates in an in~
finite medinm initially at rest with constant initial temperatue To.
There is a heat flow through the surface of the cylinder such that
the quantity of heat withdrawn by the cylinder in unit time per unit
length Is constant and equal to Qp. At infinity the medium remains
at rest and has the remperature Tp. The flow and propagation of heat
in the medium are described without allowance for dissipation by
the system of equations
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where v is the velocity, T is temperature, t is time, 0 is density,
a*is the thermal diffusivity of the medium, and @ is a function re-
lating the shear stress to the shear strain rate and temperature.

The initial and boundary conditions are
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Condition (4) is the law of motion of the cylinder, w is the an-
gular velocity, and Mot is the applied moment, We introduce
T (6) and T (6,7) so that

C=1ln @+ 6 v, 70, =0,

9=T/T0’ ’Y=S/80.
It can be shown that the solution of problem (1)—(4) has the
form

t=r2aVt.

T="T,0 (), v=act? u (),

Here, the dimensionless &(£) and u(§) are found from the system
of equations
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Integration of Eq. (7) with boundary conditions corresponding to
(2)
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gives the temperature field

6(E)=1—QEi(—§3),

z

Ei(——z)=AS e dz<0 for 0<{z<{ 0. &

Now the problem reduces to finding the solution of system (6). We
introduce the function F from (8): ¥ = F(r,6). This makes it pos-
sible to reduce (6) to the form
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We will investigate Eq. (9) for cooling of the medium by the
cylinder (Q < 0); the corresponding case of heating is easily obtained.
Through each point on the plane &7 in the region § = 0, 7= 0, de-
termined by the conditions of the problem, there passes one and
only one integral curve of Eq. (9), except for two singular points
located in an infinitely remote part of the plane on the coordinate
axes. In the case of a nonzero yield stress 7¢(6) all the curves in-
tersect the & axis at finite points at a certain angle, none of the
integral curves leaves the finite part of the plane in the direction
of the singular point (%, 0). At 7¢(6) =0 all the curves tend to that
point; the point (0,0) is a singular point of the saddle type, the axes
£= 0, 7= 0 are integral curves, lt is important to study the be-
havior of the solution for the common experimental case 74 (6) =
=B exp (—%6) and F(7,0) increasing at large 7 as F(1,6) =
= A exp (,0) 7N (nq, % > 0, N > 1);henceforth we will assume that
B # 0. The behavior of the integral curves near the 7 axis depends
importantly on the parameters of the equation. According to the
values of the parameters we can distinguish the following two essen-
tially different cases of distribution of the integral curves.

1, The case 1 + %p Q = 0.

The integral curves can all be divided into two classes. The
curves belonging to the first class have vertical asymptotes. If N <
<2 — n;Qthe second class consists of a bundle of monotonically
decreasing curves, which as £ 0 behave as follows:

T=Ef+o (8%, E>O.
The curve Q separating these classes goes to infinity as £—>0,
so that
T=DiE™M Lo (™), v=2 iﬁ:_—ihiiy
D; = [2 2(;—?_1—%;—:]1/“_—1) exp (ul %,b:il ),
(b=0.5772...).

However, if N = 2 — ®,Q, there is no second class and all the
curves belong to the first class.

2. The case 1 + %pQ < 0.

Again there are two classes. The integral curves of the first class
behave in the same way as the corresponding curves in the first
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case. The curves of the second class begin at finite points on the

£ axis, increase with increase in £, pass through a maximum, and
then decrease. For the separating curve @, which goes to infinity

as £=> 0, we have either relation (12) when =N%pQ < 1 — %yQ — 1®,Q
or
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when —N%gQ > 1 — %;Q — %Q.
The field of integral curves is shown in Fig. 1.
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We will now consider the possibilities of satisfying boundary con-
ditions (3) and (4), Conditions (3) require that
lim t=0, lim u=0 as E-—-0. (14)
It is easy to see that the first condition is satisfied for all the
integral curves. Each of them can be made to correspond with u(k)
by integrating (10). In this case it is possible to satisfy the second
of conditions (14}

E“
w=zg \ 20 g, (15)
3

where §,, is the point of intersection of the integral curve and the
axis of abscissas (Fig. 1).

Turning to (4), we see that it is not satisfied by funcrions repre-
sented by integral curves of the first class. In fact, each such curve
is located in the region £ > £° (£° isits asymptote), However, the
assumption that part of the medium adjacent to the cylinder moves
with it as 2 solid leads to the necessity of satisfying the condition
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which is violated for curves of the first class since 7—> < as £ £°,
and all the terms are positive.
For the © curves from (12) and (13) we have

lim E2(t(0) + )= 4+ o0 as E—O0.

Hence it follows that condition (4), which reduces to the form
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is not satisfied. For curves of the second class in case (1) we have
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Consequently, to each value in the range 0 < M < = there cor-
responds one and only one curve. Each curve of the second class
gives a unique solution of the problem.

In case (2) for curves of the second class condition (4) can be
satisfied only in the form (16). For the integral curve starting from
some point g, on the § axis, for which (dT/dE)g* > 0, from (16) and
(15) we have
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It can be shown that if M < Ty(Ep)Ee’, &° = In (=~%gQ), the equa-
tion has no solution, since 'r.;(gg,)g,,‘2 > To(Eq)E% for any §,. However,
if
M > 7o (Bo) Eo?, a9

then for any M satisfying this condition there is a unique root &, of
Eq. (18), and &y < &, < &g, where Ew is the solution of the equa-
tion To(£)E =

In fact, this is proved by the graphs of the functions

ES ﬁF(f, 8 ;

J (&) =

M — g2
A

presented in Fig. 2. Thus, in this case to each value of M, bounded
by condition (19), where corresponds one and only one integral curve
of Eq. (9) belonging to the second class and giving a unique solution
of the problem. Once the stress distribution has been found, the
velocity field is determined from expression (15).

Thus, depending on the properties of the medium and the values
of the external moment two different types of motion are possible.
In case (1), which for the given medium corresponds to a relatively
small cooling rate, flow develops directly at the cylinder at any
value of the external moment, the flow zone increases with time,
constantly bordering the cylinder, or no region of the medium, other
than the cylinder itself, is involved in the motion. In case (2), cor-
responding to intense heat transfer, flow develops if the external
moment exceeds a certain value. A rigid layer, increasing with time
according to the law r,(t) = 2a€VT, is formed on the cylinder. In
this case the growing cylinder rotates at a constant angular velocity

w = equ(E)/2E,.

G Epply E, E
Fig. 2

The solution obtained makes it possible to determine the yield
point parameters of the medium from the values of the quantity of
heat withdrawn in unit time and the applied moment. Noting the
value of Q= Q, at which a rigid layer first appears on the cylinder,
we obtain the parameter

'Kozilot-

Then, measuring the minimum moment Mmjp capable of causing.
flow under the conditions 1 + ®pQ < 0, we find
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